
Afterburning and the Accomplishment of Virtualization

University of Karlsruhe, Germany
University of New South Wales and National ICT Australia

http://l4ka.org/projects/virtualization

April 6, 2005

Introduction

The two prominent virtualization technologies, pure vir-
tualization and para-virtualization, provide extremes that
may force an undesirable solution. Pure virtualization
supports the use of standard legacy operating systems,
but with a performance cost, and a substantial engi-
neering cost on some architectures such as x86. Para-
virtualization achieves superior performance and scalabil-
ity, but at the cost of manual modifications to the guest
operating systems. The manual modifications of para-
virtualization abandon some of pure virtualization’s car-
dinal virtues:

1. Para-virtualization discards the layer of indirection
that belongs to pure virtualization, and thus loses the
benefit of running on a variety of hypervisors, and
restricts the extent of runtime guest mobility.

2. The high-level and manual source code modifica-
tions of para-virtualization reduce the trustworthi-
ness of the guest OS, in contrast to the transforma-
tions applied by pure virtualization at the instruction
set level.

3. Due to the complexity of the modifications to the
guest OS, para-virtualization lacks the engineering
scalability of virtualization.

Rather than choose between the two extremes, we de-
veloped a pre-virtualization technique to merge the ben-
efits of pure virtualization and para-virtualization. Pre-
virtualization achieves hypervisor diversity and runtime
mobility, provides engineering automation, and uses
transformations that share the trustworthiness properties
of pure virtualization, while retaining the performance
characteristics of para-virtualization. Not only is pre-
virtualization a substitute for para-virtualization, it en-
hances pure virtualization environments that recognize a
pre-virtualized guest OS.

Pre-Virtualization

Pre-virtualization prepares the OS kernel for execution in
a virtualization environment. It locates the virtualization-
sensitive operations of the OS kernel, and prepares them

for replacement with emulation code. The emulation code
carries out the intentions of the original sensitive oper-
ations. Pre-virtualization handles both the sensitive in-
structions of the processor, and the sensitive memory op-
erations that affect the privileged state of the processor,
including page tables and device registers. We base our
pre-virtualization solution on an automated, multi-phase
process named afterburning.

Afterburning

The first afterburning phase applies global, instruction-
level transformations to the sensitive instructions of the
guest OS kernel, at the assembler level where basic-block
information is still available. We apply a second phase
to detect and transform the sensitive memory operations
of the guest OS, e.g., those that modify page tables or
memory-mapped device registers, and achieve a substan-
tial performance improvement over the first phase alone.
The transformations convert the sensitive instructions and
memory operations into synchronous function calls to the
virtualization layer. The virtualization layer is an in-place
module, which shares the address space of the guest ker-
nel and exercises loose state consistency, and thus mini-
mizes the number of exits to the virtual machine monitor.
The in-place module includes a virtualization kit, offer-
ing emulation of the platform devices. Our device em-
ulation is based on transformations to the memory oper-
ations that access device registers, avoiding the costs of
trapping, permitting us to optimally batch device opera-
tions for scalable throughput and latency. The traditional
approach to enhancing emulated driver performance, in-
stalling custom drivers in the guest OS, is unnecessary in
our environment.

Our first two phases achieve compile-time hypervisor
diversity; at build time one chooses the appropriate trans-
formations for the target hypervisor. For run-time hyper-
visor diversity and mobility, we alter the first two phases
to generate a single binary compatible with all environ-
ments: raw hardware, pure virtual machines, or a subset
of para-virtualization environments. Instead of static code
transformations, we attach a patch-up table to the binary
to support dynamic linking with the hypervisor. The run-



time environments apply the third phase, to rewrite the
binary, using the annotations contained in the patch-up
table. The patch-up table contains sufficient information
to locate and transform sensitive operations, and comple-
ments both virtualization and para-virtualization environ-
ments. For architectures that require extra space for run-
time binary rewriting, e.g. IA32, the first two afterburning
phases insert innocuous nop instructions as place-holders.
We further promote runtime diversity and mobility via ef-
ficient device emulation; users have less incentive to in-
stall hypervisor-specific device drivers in their guest OS’s
for improving performance. By using standard devices, a
guest OS can easily migrate between the diverse virtual
machine (VM) environments that publish the same set of
standard devices.

Evaluation

We have evaluated our afterburning approach for the Xen
hypervisor and the L4 microkernel on IA32, and with an
internal hypervisor for Itanium. A single afterburnt Linux
2.6 binary for IA32 can boot on raw hardware (including
Intel VT), the Xen hypervisor, the L4 microkernel, and
VMware.

We ran the Netperf benchmark, transferring 1 GB of
data via Intel gigabit adapters, between a test system run-
ning afterburnt binaries and a normal client machine. The
test system was a 2.8GHz Pentium 4, and the client ma-
chine a 1.4GHz Pentium 4. See Table 1 and Table 2 for
the results. CPU utilization was determined with the pro-
cessor’s performance counters (the afterburnt Xen imple-
mentation had an incomplete idle loop, preventing mea-
surement of its CPU utilization).

We compared native Linux on raw hardware to the af-
terburnt Linux on raw hardware, and saw that the addi-
tional no-op instructions were not a noticeable burden.

We compared a para-virtualized XenoLinux to an after-
burnt Linux on Xen, and a para-virtualized L4Linux to an
afterburnt Linux on L4. All demonstrated similar perfor-
mance.

We additionally developed a device emulation layer for
the DP83820 network adapter. We configured an after-
burnt Linux to use the DP83820 device model, while run-
ning as an unprivileged VM on L4, connected to a real

Afterburnt Linux 2.6 Linux 2.6
Driver VM

DP83820
driver

e1000
driver

in-place 
emulation

Figure 1: Efficient emulation of the DP83820 network in-
terface, which is routed to the real e1000 device driver.

Xput CPU cycles
System Mb/s util per byte
a-L, native 834 28.6% 7.33
v-L, native 827 29.8% 7.69
a-L, Xen 834
XenoLinux 830 34.3% 8.84
a-L, L4 830 31.3% 8.06
L4L 775 35.0% 9.65
a-L, L4, dev emu 771 49.1% 13.59
L4L, dev emu 772 51.4% 14.21

Table 1: Netperf send performance of various systems.
Legend: “v-L”: native Linux, “a-L”: afterburnt Linux,
“L4L”: para-virtualized Linux on L4, “XenoLinux”: para-
virtualized Linux on Xen, “dev emu”: device emulation
in-place, interfacing to device driver in separate VM. The
column “cycles per byte” represents the number of non-
idle cycles necessary to transfer a byte of data, and is a
single figure of merit to help compare between cases of
different throughput.

Xput CPU cycles
System Mb/s util per byte
a-L, native 712 31.5% 9.46
v-L, native 713 33.0% 9.90
a-L, Xen 711
XenoLinux 711 39.0% 11.72
a-L, L4 709 37.1% 11.17
L4L 712 35.7% 10.71
a-L, L4, dev emu 707 59.8% 18.06
L4L, dev emu 708 60.3% 18.21

Table 2: Netperf receive performance of various systems.
See Table 1 for the legend.

e1000 Linux network driver hosted in the privileged VM
(see Figure 1). The performance matched that of a cus-
tomized network driver for virtualizing the connection
from the unprivileged VM to the real e1000 Linux driver
in the root VM.

Conclusion

Pre-virtualization is a significant improvement over stan-
dard para-virtualization: it offers competitive perfor-
mance, while adding engineering scalability, trustworthi-
ness in the integrity of the guest OS, and hypervisor di-
versity. The adoption of pre-virtualization would help to
quickly achieve virtualization for more processor archi-
tectures, and to support everyone’s favorite hypervisors.


